Retrieval Documentation
Functions
create_retrieval_tool(vectorstore)
Creates a LangChain retrieval tool to query account details.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
vectorstore
|
The vectorstore object. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
Tool |
Tool
|
Configured LangChain Tool instance for document retrieval. |
Example
tool = create_retrieval_tool(my_vectorstore)
response = tool.run("Invoice for FedEx shipments")
print(response)
is_substring_of_any(doc, seen_texts)
Check if the content of a document is a substring of any text in the provided set.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
doc
|
Document
|
The document to be checked. |
required |
seen_texts
|
set
|
Set of previously observed document texts. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
bool |
bool
|
True if |
Example
doc = Document(page_content="Hello world!")
seen_texts = {"Hello", "Hello world! This is an example."}
result = is_substring_of_any(doc, seen_texts)
print(result) # Output: True
retrieve_accounts(vectorstore, query, retrieved_examples=5)
Retrieves formatted account details from the vectorstore based on query relevance.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
vectorstore
|
Vectorstore object for semantic retrieval. |
required | |
query
|
str
|
The query string. |
required |
retrieved_examples
|
int
|
Number of documents to retrieve. Default is 5. |
5
|
Returns:
| Name | Type | Description |
|---|---|---|
str |
str
|
Formatted text containing retrieved document details. |
Example
output = retrieve_accounts(vectorstore, "invoice from FedEx")
print(output)
retrieve_from_pcg(vectorstore, test_query, retrieved_examples=5)
Retrieve unique, relevant documents from a vectorstore based on semantic similarity.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
vectorstore
|
Vectorstore object supporting semantic search. |
required | |
test_query
|
str
|
The query string used for retrieval. |
required |
retrieved_examples
|
int
|
Number of top documents to retrieve. Default is 5. |
5
|
Returns:
| Type | Description |
|---|---|
List[Tuple[Document, float]]
|
List[Tuple[Document, float]]: A list of tuples with Documents and their similarity scores. |
Example
results = retrieve_from_pcg(vectorstore, "invoice number details", 3)
for doc, score in results:
print(doc.page_content, score)